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ABSTRACT
Understanding the interplay between metabolism and ge-
netic regulation is considered key to shed light on the mech-
anisms underlying cancer onset and progression. In this
work, we reconstruct a number of tumor-specific genome-
scale metabolic models and inspect estimated flux profiles
via statistical analysis, characterizing the detailed metabolic
response associated to altered regulation in various tissues.
We thus demonstrate that combining complementary com-
putational techniques it is possible to identify poly-omic
differences and commonalities across cancer types.
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1 INTRODUCTION
Several recent studies have shown how cancer cells present
distinct metabolic hallmarks, such as deregulated uptake of
glucose and amino acids. Even the gene theory of cancer
has been recently object of revision in light of old and new
observations [1]. It is therefore clear that alterations on a
genomic and a metabolic level do not work in isolation, but
rather co-participate in malignant transformation. However,
the precise rewiring in the metabolism of transformed cells
∗Oral presentation
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requires more extensive elucidation. Here, we address this
problem through the investigation of the entire metabolic
states associated to altered genetic regulation in the NCI60
cancer cell line panel, which covers nine different tissues
[2]. By combining genome-scale metabolic models (GSMMs)
and statistical analysis we characterize the corresponding
cross-cancer poly-omic landscape.

2 METHODS
Experimental data sets here employed are transcriptomic
profiles, nutrient uptake rates and proliferation rates for 56
NCI60 cell lines, obtained from previous studies [3, 4]. We
used this data to build and evaluate an array of cell line-
specific GSMMs, starting from the human cell model Recon
2.2 [5]. In this process, a novel version of METRADE [6] was
adopted to (i) transform normalized gene expression profiles
by gene set rules (ii) obtain tumor-specific flux bounds taking
into account both genetic and metabolic uptake constraints.
The estimation of associated flux configurations is conducted
by a regularized flux balance analysis (FBA) optimization
task, as follows:

max
v

w⊤v −
σ

2
v⊤v

subject to S v = 0 ,
vlb φ(Θ) ≤ v ≤ vub φ(Θ) .

(1)

Here w is a real vector expressing the contribution of each
reaction to the objective and σ = 10−6 is a regularization
parameter. Vectors vlb and vub represent native flux bounds
in Recon, while vector φ(Θ) models the reaction-level gene
regulation state in any cell line based on the following map:

φ(Θ) = δ (1 + γ |loд(Θ)|)sдn(Θ−1) . (2)

In this equation, Θ is obtained from transcript abundances by
converting logical gene-protein-reaction rules into max/min
operations, as originally implemented in METRADE [6].
Moreover, γ is a parameter representing the magnitude with
which gene expression affects reaction rates, while δ is a
scaling factor introduced to adjust native flux bounds to
experimental uptake rates.
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Figure 1: (a) Comparison between biomass yield predicted
by each cell line-specific GSMM and the corresponding ex-
perimentally measured proliferation rates at the optimal γ
and δ values. (b) Overview of metabolic reactions whose pre-
dicted fluxes significantly correlate with measured cellular
proliferation (1% threshold). For each pathway, number and
fraction of significantly correlated reactions are visualized
in blue and red, respectively.

We performed a sensitivity analysis on parametersγ and δ
in Eq. (2) to evaluate the obtained flux profiles in terms of the
Pearson correlation coefficient (PCC) r between predicted cel-
lular growth and experimentally measured proliferation rate.
The predicted growth was computed through Eq. (1) assum-
ing biomass accumulation as a proxy for cell proliferation
and thus as a meaningful FBA objective to model cancerous
metabolism. Repeated PCC estimation allowed identifying
optimal γ and δ values across several orders of magnitude.
We carried out regularized FBA using the COBRA toolbox
in Matlab and the quadratic solver Gurobi [7]. Finally, using
the FactoMineR package in R [8] we performed principal
component analysis (PCA) to characterize the cross-tumor
variation at a genome-scale metabolic flux level.

3 RESULTS
As a result of the sensitivity analysis on parameters γ and
δ in Eq. (2), we obtained a PCC peak where r ≃ 0.66, p-
value ≃ 1.5 · 10−8 (Fig. 1a). We thus inspected the whole flux
profiles of tumor cells by studying their PCC with respect to
cellular proliferation rates. We observed a significant PCC
(threshold 1%) for reactions in a number of cancer-associated
pathways, supporting the reliability of our GSMMs, as well
as in less obvious pathways (Fig. 1b). These may suggest or
corroborate unknown mechanisms for tumor development.
In particular, the majority of cholesterol synthesis pathway
emerges as correlated to proliferation, supporting its debated
involvement in cancer. As another example, the exchange
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Figure 2: (a) Variability across flux profiles relative to differ-
ent tumor types in the space of the first two principal com-
ponents. (b) Contribution to the first two principal compo-
nents of the most highly contributing pathways, obtained
by summing the contributions of their associated reactions.

of dietary compounds such as maltodextrins also results
associated to proliferation.

Next, PCA of the flux profiles allowed detecting poly-omic
heterogeneities across the cell lines. As Fig. 2a shows, the
ovarian and renal cell tumors present a markedly distinct
metabolic behavior, almost orthogonal to all other tissues. A
closer look at the composition of first principal components
allowed identifying key pathways underlying such variation,
like fatty acid oxidation or eicosanoid metabolism (Fig. 2b).
This analysis thus highlights potential links in the metabolic
reprogramming of the two cancer types, suggesting also
precise reactions to focus experimental verification on.

4 CONCLUSIONS
In this work, we analyzed the poly-omic configurations of
multiple cancer types through an integrated computational
pipeline and within a comprehensive cross-tumor frame-
work. Our analysis led to the identification of both variation
and common patterns across the tumors, providing novel
insights in the general cancer molecular landscape. We thus
showed that the joint application of GSMMs and statisti-
cal analysis techniques can help elucidate the mechanisms
underlying cancer development and progression.
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